Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
J Cancer Res Clin Oncol ; 150(3): 117, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460052

RESUMO

PURPOSE: This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS: Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS: The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS: These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.


Assuntos
Chalconas , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Chalconas/farmacologia , Chalconas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos
2.
Int Immunopharmacol ; 128: 111398, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171054

RESUMO

Liver fibrosis, a progression of chronic liver disease, is a significant concern worldwide due to the lack of effective treatment modalities. Recent studies have shown that natural products play a crucial role in preventing and treating liver fibrosis. Isobavachalcone (IBC) is a chalcone compound with anti-inflammatory, antioxidant, and anti-cancer properties. However, its potential antifibrotic effects remain to be elucidated. This study aimed to investigate the antifibrotic effects of IBC on liver fibrosis and its underlying mechanisms in rats. The results showed that IBC significantly ameliorated the pathological damage and collagen deposition in liver tissues; it also reduced the levels of hydroxyproline (HYP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In addition, IBC activated Nuclear factor E2-associated factor 2/Hemeoxygenase-1 (Nrf2/HO-1) signaling, leading to the nuclear translocation of Nrf2. This translocation subsequently increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), thereby alleviating oxidative stress-induced damage. Moreover, it inhibited the expression of nuclear factor kappa B (NF-κB), which further reduced the levels of downstream inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta (IL-1ß), thereby suppressing the activation of HSCs and weakening liver fibrosis. In HSC-T6 cell experiments, changes observed in inflammatory responses, oxidative stress indicators, and protein expression were consistent with the in vivo results. Furthermore, the Nrf2 inhibitor (ML385) attenuated the effect of IBC on inhibiting the activation of quiescent HSCs. Consequently, IBC could alleviate liver fibrosis by activating Nrf2/ HO-1 signaling.


Assuntos
Chalconas , Animais , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Glutationa/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
3.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245791

RESUMO

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Assuntos
Asma , Chalcona , Chalconas , Humanos , Camundongos , Animais , Chalcona/uso terapêutico , Ovalbumina/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Pulmão/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Chem Biol Interact ; 387: 110790, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939893

RESUMO

Breast cancer is a high-magnitude public health problem, continually challenging physicians and scientists worldwide in the field of drug therapy. 4-nitrochalcone (4NC) is a phenolic compound that has promising antitumor activity in vitro, but its application in breast cancer treatment is still poorly explored. This study aimed to evaluate the action of 4NC in vitro and in vivo breast cancer models. The cytotoxic potential of 4NC was tested towards MCF-7 and MDA-MD-231 breast cancer cells, with a lower impact in the non-tumor lineage HB4a. For in vivo studies, solid Ehrlich carcinoma (SEC) was used, a syngeneic mouse model with non-nuclear estrogen and progesterone positivity, characterized by immunohistochemistry. Daily oral administration of 4NC (25 mg kg-1) for 21 days led to a consistent reduction in tumor growth compared to the vehicle group. No signs of toxicity evaluated by hematological, biochemical, histological, and oxidative stress parameters were observed in mice, and the DL50 was >2000 mg kg-1. The effectors Raptor and S6K1 showed decreased activation, with a consequent reduction in protein synthesis; concomitantly, there was an increase in LC3-II levels, but the protective autophagic response was not completed, with the maintenance of p62 levels and cell death. These results open new possibilities for the use of 4NC as a tumor cell metabolism modulating agent.


Assuntos
Antineoplásicos , Chalconas , Neoplasias , Animais , Camundongos , Humanos , Preparações Farmacêuticas , Chalconas/farmacologia , Chalconas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular , Autofagia , Linhagem Celular Tumoral , Células MCF-7 , Apoptose
5.
N Engl J Med ; 390(9): 795-805, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962077

RESUMO

BACKGROUND: Primary biliary cholangitis is a rare, chronic cholestatic liver disease characterized by the destruction of interlobular bile ducts, leading to cholestasis and liver fibrosis. Whether elafibranor, an oral, dual peroxisome proliferator-activated receptor (PPAR) α and δ agonist, may have benefit as a treatment for primary biliary cholangitis is unknown. METHODS: In this multinational, phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 2:1 ratio) patients with primary biliary cholangitis who had had an inadequate response to or unacceptable side effects with ursodeoxycholic acid to receive once-daily elafibranor, at a dose of 80 mg, or placebo. The primary end point was a biochemical response (defined as an alkaline phosphatase level of <1.67 times the upper limit of the normal range, with a reduction of ≥15% from baseline, and normal total bilirubin levels) at week 52. Key secondary end points were normalization of the alkaline phosphatase level at week 52 and a change in pruritus intensity from baseline through week 52 and through week 24, as measured on the Worst Itch Numeric Rating Scale (WI-NRS; scores range from 0 [no itch] to 10 [worst itch imaginable]). RESULTS: A total of 161 patients underwent randomization. A biochemical response (the primary end point) was observed in 51% of the patients (55 of 108) who received elafibranor and in 4% (2 of 53) who received placebo, for a difference of 47 percentage points (95% confidence interval [CI], 32 to 57; P<0.001). The alkaline phosphatase level normalized in 15% of the patients in the elafibranor group and in none of the patients in the placebo group at week 52 (difference, 15 percentage points; 95% CI, 6 to 23; P = 0.002). Among patients who had moderate-to-severe pruritus (44 patients in the elafibranor group and 22 in the placebo group), the least-squares mean change from baseline through week 52 on the WI-NRS did not differ significantly between the groups (-1.93 vs. -1.15; difference, -0.78; 95% CI, -1.99 to 0.42; P = 0.20). Adverse events that occurred more frequently with elafibranor than with placebo included abdominal pain, diarrhea, nausea, and vomiting. CONCLUSIONS: Treatment with elafibranor resulted in significantly greater improvements in relevant biochemical indicators of cholestasis than placebo. (Funded by GENFIT and Ipsen; ELATIVE ClinicalTrials.gov number, NCT04526665.).


Assuntos
Chalconas , Fármacos Gastrointestinais , Cirrose Hepática Biliar , Receptores Ativados por Proliferador de Peroxissomo , Propionatos , Humanos , Administração Oral , Fosfatase Alcalina/sangue , Bilirrubina/sangue , Chalconas/administração & dosagem , Chalconas/efeitos adversos , Chalconas/uso terapêutico , Colestase/sangue , Colestase/tratamento farmacológico , Colestase/etiologia , Método Duplo-Cego , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/uso terapêutico , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , PPAR alfa/agonistas , PPAR delta/agonistas , Propionatos/administração & dosagem , Propionatos/efeitos adversos , Propionatos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Resultado do Tratamento , Ácido Ursodesoxicólico/efeitos adversos , Ácido Ursodesoxicólico/uso terapêutico , Colagogos e Coleréticos/administração & dosagem , Colagogos e Coleréticos/efeitos adversos , Colagogos e Coleréticos/uso terapêutico
6.
Chem Biol Drug Des ; 103(1): e14400, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994272

RESUMO

A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1 H NMR, 13 C NMR and HRMS. The synthesized analogues were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogues were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, 7f was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 µM, respectively. Against T. b. rhodesiense, 7e was found to be the most active with an IC50 value of 1.13 µM. All synthesized active analogues were found to be non-cytotoxic against MRC-5 and PMM with selectivity indices of up to more than 50.


Assuntos
Antiprotozoários , Doença de Chagas , Chalcona , Chalconas , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Camundongos , Animais , Humanos , Antiprotozoários/química , Chalconas/farmacologia , Chalconas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Piridinas/uso terapêutico , Tripanossomicidas/química
7.
Crit Rev Oncog ; 28(4): 27-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050979

RESUMO

Chalcones are small molecules, naturally found in fruits and vegetables, and exhibit diverse pharmacological activities. They also possess anticancer activity against different tumors. They can be converted into numerous derivatives by modifying hydrogen moieties, enabling the exploration of their diverse anticancer potentials. The main aims are to provide valuable insights into the recent progress made in utilizing chalcones and their derivatives as agents against breast cancer while delivering their underlying molecular mechanisms of action. This review presents anticancer molecular mechanisms and signaling pathways modulated by chalcones. Furthermore, it helps in the understating of the precise mechanisms of action and specific molecular targets of chalcones and their synthetic derivatives for breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalconas , Humanos , Feminino , Chalconas/farmacologia , Chalconas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067507

RESUMO

Ovarian cancer ranks as the eighth most prevalent form of cancer in women across the globe and stands as the third most frequent gynecological cancer, following cervical and endometrial cancers. Given its resistance to standard chemotherapy and high recurrence rates, there is an urgent imperative to discover novel compounds with potential as chemotherapeutic agents for treating ovarian cancer. Chalcones exhibit a wide array of biological properties, with a particular focus on their anti-cancer activities. In this research, we documented the synthesis and in vitro study of a small library of chalcone derivatives designed for use against high-grade serous ovarian cancer (HGSOC) cell lines, specifically OVCAR-3, OVSAHO, and KURAMOCHI. Our findings revealed that three of these compounds exhibited cytotoxic and anti-proliferative effects against all the tested HGSOC cell lines, achieving IC50 concentrations lower than 25 µM. Further investigations disclosed that these chalcones prompted an increase in the subG1 phase cell cycle and induced apoptosis in OVCAR-3 cells. In summary, our study underscores the potential of chalcones as promising agents for the treatment of ovarian cancer.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
9.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958533

RESUMO

Chalcone is a common simple fragment of natural products with anticancer activity. In a previous study, the research group discovered a series of chalcone derivatives with stronger anticancer activities. To find better anticancer drugs, novel chalcone derivatives A1-A14, B1-B14 have continuously been designed and synthesized. The antiproliferative activity of these compounds against breast cancer cells (MCF-7) was investigated by the Cell Counting Kit-8 (CCK-8) method with 5-fluorouracil (5-Fu) as the control drug. The results showed that compound A14 exhibited excellent antiproliferative ability compared to the control drug 5-Fu. Scratch experiments and cloning experiments further confirmed that compound A14 could inhibit the proliferation and colony formation activity of MCF-7 cells. In addition, molecular docking primarily explains the interaction between compound and protein. These results suggested that compound A14 could be a promising chalcone derivative for further anti-breast cancer research.


Assuntos
Antineoplásicos , Neoplasias da Mama , Chalcona , Chalconas , Humanos , Feminino , Chalcona/farmacologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Estrutura Molecular , Linhagem Celular Tumoral
10.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958912

RESUMO

In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.


Assuntos
Depressores do Apetite , Chalconas , Diabetes Mellitus Tipo 2 , Animais , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Obesidade/metabolismo
11.
Bioorg Chem ; 141: 106931, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879182

RESUMO

Chagas disease (CD) is a neglected tropical disease of worldwide health concern, caused by the flagellate protozoan Trypanosoma cruzi (T. cruzi), endemic in Latin America and present in North America and Europe. The WHO recommended drug for CD, benznidazole has low safety profile and several limitations. Therefore, an entity with better therapeutic potential to treat CD is required. Chalcones are an important class of compounds, which have shown antichagasic potential. Thus, the objective of this study was to evaluate the activity of synthetic p-aminochalcones against T. cruzi. Chalcones 1 and 2 were synthesized by Claisen-Schmidt condensation and characterized by both spectroscopic and theoretical methods. Initially, they were submitted to molecular docking simulations using cruzain and trypanothione reductase (TR) enzymes. It was expected to observe the possible interactions of chalcones with the catalytic site and other important regions of these main pharmacological targets of T. cruzi. Their cytotoxicity within host cells were assessed by MTT reduction assay using LLC-MK2 cells, with CC50 = 85.6 ± 9.2 µM and 1115 ± 381.7 µM for chalcones 1 and 2, respectively. These molecules were also tested against epimastigote and trypomastigote life forms of T. cruzi, causing reduction in the number of viable parasites. For the evaluation of the effect on intracellular amastigotes, infected LLC-MK2 cells were incubated with the chalcones for 24 h, causing reduction in the percentage of infected cells and the number of amastigotes/100 cells. Finally, flow cytometry assays were performed for analyzing cell death mechanisms (7-AAD/AxPE labelling), cytoplasmic ROS accumulation (DCFH-DA assay) and mitochondrial transmembrane potential disruption (Rho123 assay). Both chalcones (1 and 2) caused membrane damage, ROS accumulation and mitochondrial depolarization. In conclusion, the synthetic p-aminochalcones presented trypanocidal effect, causing membrane damage and oxidative stress. Their mechanism of action may be related to cruzain and TR inhibition.


Assuntos
Doença de Chagas , Chalconas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/química , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Chalconas/farmacologia , Chalconas/uso terapêutico , Doença de Chagas/tratamento farmacológico
12.
Oncol Rep ; 50(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859622

RESUMO

Lung squamous cell carcinoma (LSCC) is a highly heterogeneous malignancy with high mortality and few therapeutic options. Licochalcone A (LCA, PubChem ID: 5318998) is a chalcone extracted from licorice and possesses anticancer and anti­inflammatory activities. The present study aimed to elucidate the anticancer effect of LCA on LSCC and explore the conceivable molecular mechanism. MTT assay revealed that LCA significantly inhibited the proliferation of LSCC cells with less cytotoxicity towards human bronchial epithelial cells. 5­ethynyl­2'­deoxyuridine (EdU) assay demonstrated that LCA could reduce the proliferation rate of LSCC cells. The flow cytometric assays indicated that LCA increased the cell number of the G1 phase and induced the apoptosis of LSCC cells. LCA downregulated the protein expression of cyclin D1, cyclin E, CDK2 and CDK4. Meanwhile, LCA increased the expression level of Bax, cleaved poly(ADP­ribose)polymerase­1 (PARP1) and caspase 3, as well as downregulated the level of Bcl­2. Proteomics assay demonstrated that LCA exerted its antitumor effects via inhibiting mitogen­activated protein kinase (MAPK) signaling pathways and the expression of F­box protein 5 (FBXO5). Western blot analysis showed that LCA decreased the expression of p­ERK1/2, p­p38MAPK and FBXO5. In the xenograft tumors of LSCC, LCA significantly inhibited the volumes and weight of tumors in nude mice with little toxicity in vital organs. Therefore, the present study demonstrated that LCA effectively inhibited cell proliferation and induced apoptosis in vitro, and suppressed xenograft tumor growth in vivo. LCA may serve as a future therapeutic candidate of LSCC.


Assuntos
Carcinoma de Células Escamosas , Chalconas , Proteínas F-Box , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Chalconas/farmacologia , Chalconas/uso terapêutico , Proteínas F-Box/metabolismo , Pulmão/patologia , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
13.
Biochem Pharmacol ; 218: 115859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863326

RESUMO

Cutaneous melanoma is one of the most prevalent tumors, and it is still a huge challenge in the current clinical treatment. Isoliquiritigenin (ISL), which is isolated from Glycyrrhiza uralensis Fisch., has been reported for its anti-tumor effect. However, the underlying mechanism and targets of ISL are still not be revealed clearly. In this study, differentiallyexpressedproteins were identified bylabel-free quantitative mass spectrometry. Two isoforms of the histone variant H2A.Z, including H2A.Z.1 and H2A.Z.2, were significantly down regulated after administration of ISL in melanoma. H2A.Z.1 was highly expressed in melanoma and correlated with poor prognosis of melanoma. The expression of H2A.Z was inhibited by ISL in a concentration-dependent manner. Overexpression of H2A.Z.1 in melanoma cell lines partly restored the repressed cell proliferation and cell cycle by ISL. Moreover, E2F1 was identified as one downstream target of H2A.Z.1, which was also highly expressed in melanoma and correlated with poor prognosis of melanoma. Furthermore, in vivo assays validated the inhibitory role of ISL in melanoma proliferation and the expression of H2A.Z.1 and E2F1.Aboveall,it is indicated that ISL inhibit melanoma proliferation via targeting H2A.Z.1-E2F1 pathway. These findings explain the anti-tumor mechanism of ISL and provide potential therapeutic targets for melanoma.


Assuntos
Chalconas , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Histonas , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/uso terapêutico , Fator de Transcrição E2F1
14.
Biochem Biophys Res Commun ; 681: 249-270, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793311

RESUMO

Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Chalconas , Neoplasias Hepáticas , Masculino , Humanos , Chalconas/farmacologia , Chalconas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Tubulina (Proteína)/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
15.
Eur J Pharmacol ; 957: 176031, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660967

RESUMO

Myocardial ischemia-reperfusion (I/R) injury triggers several cell death types, including apoptosis, autophagy, and ferroptosis. Licochalcone A (LCA), a natural flavonoid compound isolated from the root of Glycyrrhiza glabra, has been demonstrated to exert potential pharmacological benefits, such as antioxidant, antitumor, and anti-inflammatory activities. The present study aimed to investigate the involvement of ferroptosis in the pathogenesis of I/R and determine whether LCA can inhibit ferroptosis to prevent the myocardial I/R injury in rats. The effects of LCA on myocardial I/R injury were detected by examining the left ventricular-developed pressure and triphenyltetrazolium chloride staining. We conducted Western blotting analyses, ELISA assay, and quantitative real-time PCR to determine the levels of ferroptosis-related molecules. To demonstrate the cardioprotective effect of LCA in vitro, H9c2 and primary neonatal rat cardiomyocytes were co-treated with ferroptosis inducers (erastin, RSL3, or Fe-SP) and LCA for 16 and 24 h. Our ex vivo study showed that LCA increased the cardiac contractility, and reduced the infarct volume and ferroptosis-related biomarkers in rat hearts after I/R. Moreover, LCA reduced the levels of ferroptosis inducers-induced reactive oxygen species generation, lipid peroxidation, and ferroptosis-related biomarkers in cultured H9c2 cells and cardiomyocytes. LCA also reduced the Fe-SP-increased nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 protein levels in cultured cardiomyocytes. In the present study, we showed that the LCA-induced cardioprotective effects in attenuating the myocardial I/R injury were correlated with ferroptosis regulation, and provided a possible new therapeutic strategy for prevention or therapy of the myocardial I/R injury.


Assuntos
Chalconas , Ferroptose , Animais , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Fenômenos Fisiológicos Cardiovasculares , Isquemia
16.
Exp Parasitol ; 255: 108628, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776969

RESUMO

About a third of the world population is infected by helminth parasites implicated in foodborne trematodiasis. Fascioliasis is a worldwide disease caused by trematodes of the genus Fasciola spp. It generates huge economic losses to the agri-food industry and is currently considered an emerging zoonosis by the World Health Organization (WHO). The only available treatment relies on anthelmintic drugs, being triclabendazole (TCBZ) the drug of choice to control human infections. The emergence of TCBZ resistance in several countries and the lack of an effective vaccine to prevent infection highlights the need to develop new drugs to control this parasitosis. We have previously identified a group of benzochalcones as inhibitors of cathepsins, which have fasciolicidal activity in vitro and are potential new drugs for the control of fascioliasis. We selected the four most active compounds of this group to perform further preclinical studies. The compound's stability was determined against a liver microsomal enzyme fraction, obtaining half-lives of 34-169 min and low intrinsic clearance values (<13 µL/min/mg), as desirable for potential new drugs. None of the compounds were mutagenic or genotoxic and no in vitro cytotoxic effects were seen. Compounds C31 and C34 showed the highest selectivity index against liver fluke cathepsins when compared to human cathepsin L. They were selected for in vivo efficacy studies observing a protective effect, similar to TCBZ, in a mouse model of infection. Our findings strongly encourage us to continue the drug development pipeline for these molecules.


Assuntos
Anti-Helmínticos , Chalconas , Fasciola hepatica , Fasciolíase , Animais , Camundongos , Humanos , Fasciolíase/tratamento farmacológico , Fasciolíase/parasitologia , Chalconas/farmacologia , Chalconas/uso terapêutico , Triclabendazol/farmacologia , Triclabendazol/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Catepsinas
17.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762479

RESUMO

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Assuntos
Doença de Alzheimer , Chalconas , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Chalconas/farmacologia , Chalconas/uso terapêutico
18.
Molecules ; 28(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764355

RESUMO

No drug on the market, as a single entity, participates in different pathways involved in the pathology of Alzheimer's disease. The current study is aimed at the exploration of multifunctional chalcone derivatives which can act on multiple targets involved in Alzheimer's disease. A series of novel aminoethyl-substituted chalcones have been developed using in silico approaches (scaffold morphing, molecular docking, and ADME) and reported synthetic methods. The synthesized analogs were characterized and evaluated biologically using different in vitro assays against AChE, AGEs, and radical formation. Among all compounds, compound PS-10 was found to have potent AChE inhibitory activity (IC50 = 15.3 nM), even more than the standard drug (IC50 = 15.68 nM). Further, the in vivo evaluation of PS-10 against STZ-induced dementia in rats showed memory improvement (Morris Water Maze test) in rats. Also, PS-10 inhibited STZ-induced brain AChE activity and oxidative stress, further strengthening the observed in vitro effects. Further, the molecular dynamic simulation studies displayed the stability of the PS-10 and AChE complex. The novel aminoethyl-substituted chalcones might be considered potential multifunctional anti-Alzheimer's molecules.


Assuntos
Doença de Alzheimer , Chalcona , Chalconas , Animais , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dor
19.
J Med Virol ; 95(8): e29059, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635463

RESUMO

Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.


Assuntos
Chalconas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Chalconas/farmacologia , Chalconas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação
20.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445844

RESUMO

The aim of this review is to highlight the chemopreventive properties of hydroxy-substituted natural and synthetic chalcones along with a number of their analogs. These products display various biological activities, and have many applications against various diseases. Antioxidant and anti-inflammatory properties of chalcones bearing hydroxy substituents are underlined. The influence of hydroxy substituents located on ring A, B, or both are systematized according to the exhibited biological properties.


Assuntos
Chalconas , Chalconas/farmacologia , Chalconas/uso terapêutico , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...